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Abstract 

In this work, the design optimization of a robot arm was conducted by following the Kriging-genetic algorithm method. The 

method followed has three main steps which are conducting design of experiment, building a response surface, and 

implementing design optimization.  In this method, Latin Hypercube Sampling is used for conducting the design of 

experiments. Kriging modelling is used for constructing a response surface. As regard with the optimization technique, the 

multi-objective genetic algorithm is used to govern the optimization process.  When the results of the method followed was 

compared with those of the FEM simulation, it was concluded that the method followed can give accurate and precise results 

for the design optimization. Moreover, at the result of the optimization process, a new robot arm having more strength and 

less weight was achieved. Also, the case study points out that the method of Kriging-Genetic algorithm can be effectively 

used in design optimization of mechanical components. 

Keywords: Design optimization, robot arm, Kriging, genetic algortihm.  

1. Introduction 

Design optimization generally can be categorized as two types: deterministic and stochastic design 

optimization. Deterministic design optimization involves mean or nominal values specified for a design 

problem while stochastic design optimization focuses on the uncertainty in the design variables or parameters 

[1]. There are several up-to-date researches about the stochastic design optimization. The directions of these 

research can be given as reliability-based design optimization [2, 3], robust design optimization [4, 5], and 

reliability-based robust design optimization [1, 6]. Although the stochastic optimization provides designers with 

more realistic design solutions, this type of optimization has high computational costs [7]. Compared to the 

stochastic one, the deterministic design optimization is known to be more practical and efficient approach for 

design problems. Most of the up-to-date research about the deterministic design optimization have utilized the 

Response Surface Methodology (RSM) [8-10]. In this paper, the deterministic optimization is taken as a base 

approach. Herein, to implement the deterministic design optimization, RSM is followed. RSM follows three 

main steps: conducting the Design of Experiments (DoE), building a response surface, and implementing the 

design optimization. Within this work, the design optimization of a robot arm by using RSM consisting of 
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Kriging modelling and Genetic Algorithm (GA), which is a well-known method in the literature, is carried out 

via ANSYS software. Herein the main aim is to show how to use the Kriging-GA method in a robot design.  

The rest of this paper is organized as follows: In Section 2, the method of design optimization followed in 

this work is explained step by step. In Section 3, a case study is implemented to show how to apply the method 

of design optimization to a robot arm design problem. In Section 4, evaluations of the results, and a discussion 

about the superiority of the optimization method is given.  

2. The followed Deterministic Design Optimization Method 

This section includes the method of design optimization followed in this work is theoretically explained step 

by step as illustrated in the flowchart given in Figure 1. 

In the first step, the lower and upper bounds of the design variables are specified, and sufficient number of 

design candidates are generated by utilizing a method of DoE. Within this work, Latin Hypercube Sampling 

(LHS) is used to generate different design inputs depending on the given ranges of the design variables. Finally, 

the design responses corresponding to design inputs are calculated via Finite Element Analysis (FEM). 

In the second step, it is aimed to construct a response surface. To that end, several techniques, such as 

Artificial Neural Network (ANN) and Kriging modelling can be used. Kriging modelling has been mostly used 

for constructing a response surface. ANN also have been used for modelling nonlinear problems.  Herein, 

Kriging modelling is chosen for constructing a response surface representing the relationships between the 

design inputs and their responses. 

In the third step, the design optimization is carried out depending on aim-specific objectives by utilizing an 

optimization technique. The objectives can be determined according to the conditions of the design problem. 

As an optimization technique, the Genetic Algorithm (GA) is used to govern the multi-objective optimization 

in this work. When the optimum design found does not sufficiently satisfy the objectives, all of the process is 

repeated from first step to third step.   

 

 

Figure 1. The flowchart of the design optimization method followed 

3. A Case Study 

In this section, a case study is implemented to show how to apply the method of design optimization to a 

robot arm design problem. It is assumed that the robot arm is assumed to move in a narrow space on the X-and 
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Z-axes (Figure 2). In addition to that, the design optimization of the robot arm is conducted based on the data 

achieved from the static analysis using FEM.  

 

Figure 2. The robot arm to be optimized. 

Design variables of the robot arm to be used in design optimization are presented in Figure 3. Totally, three 

design variables (thicknesses) were used in the optimization process. Other dimensions were assumed to be 

fixed to evaluate the robot arm at the same position. As regards to the design responses, three design outputs or 

responses, which were maximum Von-Mises stress, maximum total deformation and mass, were considered.  

 

Figure 3. Design variables of the robot arm to be used in design optimization. 

 

Prior to the DoE along with the FEM process, the initial design is needed to be analyzed to find the design 

responses for the first situation in the design process. For that aim, first, the boundary and loading conditions 

for the finite element analysis of the arm were determined (Figure 4). The base of the robot arm is considered 

to be fixed support, and a force with Fx=1500 N and Fy=1500 N is applied to the end effector.  
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Figure 4. Boundary and loading conditions for the finite element analysis of the arm 

Based on the boundary and loading conditions, static analysis of the arm was conducted. At the 

result of the finite element analysis, the Von-Mises stress and total deformation distribution of initial 

design are demonstrated in Figure 5. The maximum stress occurred on the initial design was found to 

be 170.15 MPa, and the maximum total deformation of the design was found to be about 0.08 mm. 

Also, the mass of the initial design was found to be 11.94 kg.  

 

a)                                                                                    b) 

Figure 5. The results of finite element analysis of initial design: a) Von-Mises stress distribution, b) total 

deformation distribution. 

Prior to the DoE process, the lower and upper bounds of the design variables should be determined. The 

initial values of the design variables and their ranges specified are presented in Table 1. In this design, the lower 

and upper bounds for all of variables were assumed to 15 mm and 28 mm, respectively.  
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Table 1. The initial values of the design variables, and their ranges specified. 

Design variables (symbol) Initial Value Ranges  

Thickness (mm) (V1) 25 15  V1  28 

Thickness (mm) (V2) 20 15  V2  28 

Thickness (mm) (V3) 25 15  V3  28 

 

A set of 50 design candidates was generated using LHS when the DoE process was carried out depending 

on the given ranges of the design variables. After that, the design responses corresponding to design inputs were 

calculated via Finite Element Analysis (FEM). 

In the second step of the optimization process, the best promising response surface was constructed by 

utilizing Kriging modelling. The learning accuracy of the response surface is presented in Table 2. From the 

Table, the coefficients of determination for all of the design responses are sufficiently high values. Also the root 

mean square errors for all of the design responses are sufficiently low values. It can be said that the Kriging 

model is an accurate model to account for the relationships between design variables and responses.  

Table 2. The learning accuracy of the Kriging model 

Learning criteria Maximum Von-Mises stress Maximum total deformation Mass 

Coefficient of determination 0.99 0.99 0.99 

Root mean square error 4.6573E-06 6.631E-10 6.232E-15 

 

In the third step, the design optimization was implemented by utilizing the Kriging model and multi-

objective GA.  The GA parameters used in the optimization process were 300 initial samples, 80 iterations, 300 

samples of per iteration, and 814 evaluations. The optimum design found by the GA process must be validated 

by comparing the result of Kriging-GA process with that of the FEM simulation. This comparison is presented 

in Table 3. According to the Table 4, all of response values has low differences for two methods. It means that 

the method of Kriging-GA can give accurate and precise results for the design optimization.  

Table 3. Validation of the method of design optimization with FEM simulation. 

Method Design responses 

DR1 DR2 DR3 

Kriging-GA 152.76 0.08 11.06 

FEM Simulation 149.12 0.08 11.06 

 

To see the differences between initial and optimum design responses, a comparison between them was made 

as given in Table 4. From this comparison, there are significant improvements in two responses which are 

maximum stress and mass. At the result of the optimization process, a new robot arm having more strength and 

less weight was achieved. Also, the geometric models of initial design and optimum design are illustrated in 

Figure 6 to show visual differences between initial and optimum design. 
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Table 4. Comparison of initial and optimum design responses 

Design responses Initial design Optimum design Difference (%) 

Maximum stress (MPa) (R1) 170.15 152.76 -10.22 

Total deformation(mm) (R2) 0.08 0.08 0 

Mass(kg)                        (R3) 11.94 11.06 -7.37 

 

a)                                                                                    b) 

Figure 6. Geometric models of initial design (a) and optimum design (b). 

4. Conclusion 

In this work, the design optimization of a robot arm was conducted by following the Kriging-GA method. 

Herein, it is assumed that the robot arm is assumed to move in a narrow space on the X-and Z-axes. In addition 

to that, the design optimization of the robot arm is conducted based on the data achieved from the static analysis 

using FEM. Totally, three design variables (thicknesses) were used in the optimization process. Other 

dimensions were assumed to be fixed to evaluate the robot arm at the same position. As regards to the design 

responses, three design outputs or responses, which were maximum Von-Mises stress, maximum total 

deformation and mass, were considered. The Kriging model constructed was an accurate model to account for 

the relationships between design variables and responses because it had relatively high coefficients of 

determination, and low root mean square errors. When the results of Kriging-GA process were compared with 

those of the FEM simulation, it was concluded that the method of Kriging-GA can give accurate and precise 

results for the design optimization. Moreover, at the result of the optimization process, a new robot arm having 

more strength and less weight was achieved. Also, the case study points out that the method of Kriging-GA can 

be effectively used in design optimization of mechanical components. In the future, the comparison of 

performances of the different response surface techniques can be investigated, and most promising techniques 

or methods can be applied to the complex design optimization problems.   

 



 

                                                                                               Journal of Materials and Manufacturing (2022) 1:31-37 

37 
 

Author Contribution Statement 

Murat Mayda conducted all of the works in this paper.  

References 

[1] Mayda, M. (2017). An Efficient Simulation-Based Search Method for Reliability-Based Robust Design 

Optimization of Mechanical Components. Mechanika, 23 (5), 696-702.  

[2] Zhao, H. (2022). A practical and efficient reliability-based design optimization method for rock tunnel 

support. Tunnelling and Underground Space Technology, 127, 104587. 

[3] Zadeh, P. M., & Mohagheghi, M. (2022). An efficient Bi-level hybrid multi-objective reliability-based 

design optimization of composite structures. Composite Structures, 296, 115862. 

[4] Coppitters, D., Paepe, W. D., & Contino, F. (2021). Robust design optimization of a photovoltaic-battery-

heat pump system with thermal storage under aleatory and epistemic uncertainty. Energy, 229, 120692. 

[5] Lee, D., Jahanbin, R., & Rahman, S. (2022). Robust design optimization by spline dimensional 

decomposition. Probabilistic Engineering Mechanics, 68, 103218.  

[6] Jiang, Z., Wu, J., Huang, F., Lv, Y., & Wan, L. (2021). A novel adaptive Kriging method: Time-dependent 

reliability-based robust design optimization and case study. Computers & Industrial Engineering, 162, 

107692.  

[7] Ruiz, P. A., Philbrick, C. R., & Sauer, P. W. (2010) Modeling approaches for computational cost reduction 

in stochastic unit commitment formulations. IEEE Transactions on Power Systems, 25 (1): 588-589. 

[8] Díaz, J., Cid Montoya, M., & Hernández, S. (2016). Efficient methodologies for reliability-based design 

optimization of composite panels. Advances in Engineering Software, 93: 9-21. 

[9] Zhang, L., Yu, C., & Liu, B. (2022). Surrogate-based structural optimization design of large-scale 

rectangular pressure vessel using radial point interpolation method. International Journal of Pressure 

Vessels and Piping, 197, 104638. 

[10] Kim, J., Son, M., Han, S. S., Yoon, Y. S., & Oh, H. (2022). Computational-cost-efficient surrogate model 

of vacuum pressure swing adsorption for CO separation process optimization. Separation and Purification 

Technology, 300, 121827. 

 

 

 


