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Abstract 

In this work, the metallic FeNi3 nanoparticles with spherical structure have been synthesized in the presence of sodium 

dodecyl sulfate (SDS) using the hydrothermal method at 180 °C for 2 hours. The structural and morphological of the FeNi3 

metallic nanoparticles were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectra (FTIR), scanning 

electron microscopy (SEM), and energy dispersion spectrum (EDS). As a result of XRD, the obtained metallic nanoparticles 

were observed to be single-phase pure stoichiometric FeNi3 metallic nanoparticles with a face-centered cubic crystal 

structure. In the FTIR analysis, the peak obtained at 478.3 cm-1 was a characteristic Fe-Ni peak. The SEM-EDS images 

obtained in the microstructure analysis showed that the FeNi3 metallic nanoparticles produced were 169.33 nm in size and 

had a spherical morphology. The hydrothermal method used in the study is known to be very effective in producing metallic 

nanoparticles. In addition, the use of sodium dodecyl sulfate as an anionic surfactant and the realization of the reaction in 

ethanol/water environments reveal the innovative aspect of the study. 

Keywords: Metallic nanoparticles, FeNi3, hydrothermal method, sodium dodecyl sulfate.  

1. Introduction 

Recently, metallic nanoparticles (m-NPs) have been increasingly applied such as target drugs, magnetic fluid, 

electromagnetic devices, data storage, catalysis, temperature or humidity sensors, and so on [1-3]. It is known 

that the fascinating properties of low-dimensional (m-NPs) with different morphologies increase with the 

decrease in particle size [4, 5]. Therefore, precise design and control of morphological properties are required 

to stabilize m-NPs used in special applications [6-10]. Especially, FexNi1-x alloy, where x is in the range of 20-

50% by weight, are m-NPs used in data storage [11], catalysis [12], temperature or humidity sensors [13, 14] or 

spintronic devices [8, 15, 16] and play a significant role in the progress of materials for green environmental. In 

this context, developing a low-cost synthesis procedure using simple laboratory equipment is synthesizing FeNi3 

m-NPs.  

Until now, FeNi3 m-NPs with various morphologies and size distributions have been produced with several 

approaches including mechanical alloying [17-19], anhydrous organometallic [20], spray pyrolysis [21], air 

melting [22], electrodeposition [23] and hydrothermal reduction [24-26]. One of these techniques, the 

hydrothermal method widely used in synthesizing various nanoparticles has been broadly built due to the 

superiority of simple operation, low cost, the simplicity of the equipment, and low synthesis temperature used 

during synthesis compared to other methods [27-31].  
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However, the hydrothermal method to obtain FeNi3 nanoparticles is not without problems, since it is difficult 

to convert iron salts to stable hydroxides during the hydrothermal reaction. Accordingly, the synthesis of FeNi3 

m-NPs remains a cautionary and not fully resolved issue. As a result, the basic parameters involved in these and 

similar chemical reactions need to be better optimized [24, 31, 32]. In the literature, FeNi3 nanoparticles with 

different morphologies (sphere, sheet, rod, etc.) were produced by using a reducing agent as a hydrazine hydrate 

[33-35]. In Snoek's relationship, the magnetism can be increased importantly by producing nanoparticles with 

different morphologies [36]. FeNi3 nano chains fabricated using cetyltrimethylammonium bromide (CTAB), as 

the cationic surfactant, showed a higher saturation magnetization (Ms) compared to particles with spherical 

morphology [37]. In addition, the addition of pyridinium and its derivatives to the reduction reaction resulted in 

the formation of 3-dimensional spine-like FeNi3 structures as opposed to spherical particles [35]. Guo et al. 

investigated the influence of Sodium lignosulfonate (SLS) on the microstructure and crystally of FeNi3 

nanoparticles.  It was observed that the transformation in FeNi3 particle morphology was from spherical to flake-

shaped by adding SLS to hydrazine reduction [38]. It is known that sodium dodecyl sulfate (SDS), which is an 

anionic surfactant, is used to synthesize FeNi3 alloys through the hydrothermal method [27]. In studies so far, 

the influence of SDS use on the morphology, particle size, and shape of FeNi3 m-NPs remains unclear.  

There are few studies on hydrothermal synthesis using anionic surfactants (SDS) to calibrate the crystal 

structure, particle size, and shape of FeNi3 m-NPs [29, 38, 39]. In addition, a detailed structural and 

morphological examination of the products synthesized in an ethanol/water environment using SDS was not 

done. In this work, the produce of FeNi3 m-NPs using the hydrothermal synthesis method was synthesized using 

SDS, an anionic surfactant, into the hydrazine reduction solution in an ethanol/water medium, unlike the related 

studies.  

 

2. Author Artwork (Material and Method) 

2.1 Materials 

Produce of FeNi3 m-NPs by the hydrothermal method was actualized in a 150 mL Teflon-coated stainless-

steel autoclave. FeNi3 nanoparticles were synthesized by using Nickel (II) chloride hexahydrate (NiCl2.6H20) 

(99.9%, Aldrich), Iron (III) nitrate nonahydrate (Fe(NO3)3.9H20) (98%, Aldrich), hydrazine hydrate (N2H4.H2O, 

80%, Aldrich), sodium dodecyl sulfate (SDS) (97.0%, Aldrich) and NaOH (96%, Aldrich). Ethanol 

(CH3CH2OH 96%, Aldrich) and pure water were used as a solvent.  

 

2.2 Synthesis of FeNi3 m-NPs 

 

In the synthesis of m-NPs, the basic solution was prepared by first dissolving 0.41 g Fe(NO3)3.9H20 and 0.71 

g NiCl2.6H20 in 25 mL in ethanol-water (the volume ratio of ethanol/water 1:1) solution in amounts 

corresponding to 3:1 molar ratio of nickel to iron. After mechanically mixing the solution for 30 min., 0.1M 

NaOH was added dropwise to the constantly stirred solution at 0.20 mL/min speed until the pH reached to 11. 

Subsequently, 2 mL of hydrazine hydrate was dropped into the reaction as a reductant, and 0.5 g of SDS was 

used as a surfactant. For the prepared solution to be homogeneous, it was mixed vigorously in a magnetic stirrer 

at 25 °C for 30 minutes. The resulting solution (50 mL total volume) was placed in a 150 mL capacity Teflon-

lined stainless-steel autoclave. The temperature of the hydrothermal device was raised to 180°C and kept there 

for 120 minutes. Subsequently, it was then left to cool to bring the temperature of the device to room 

temperature. The black m-NPs accumulated under the Teflon crucible were centrifuged at 10000 rpm for 5 

minutes and separated in the solution. Afterward, the particles were washed several times with a 1:1 mixture of 

pure water and alcohol to remove alkali salts and/or impurities. Powders were obtained by drying in air at 40 

°C for 4 hours without any additional heat treatment. 
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2.3 Characterization 

 

The phase components and crystal structures of the resulting final powders were investigated using a Bruker 

D8 Advance model X-ray diffraction meter (XRD) with Cu-Kα radiation (λ = 1.54060 Å) between 2θ = 20-90° 

limit values at a scanning rate of 2°/min and an x-ray source operating voltage of 40 kV. Bond formations were 

investigated using Bruker VERTEX-70 model Fourier transform infrared spectra (FTIR) device. FTIR spectrum 

of the FeNi3 m-NPs was recorded over the range of 4000–400 cm−1 at a resolution of 4 cm−1 using FTIR 

spectroscopy. Elemental structures and morphologies of the obtained powders were characterized by using an 

SM Zeiss LS-10 model scanning electron microscope (SEM) equipped with energy-dispersive X-ray 

spectrometry (EDS). 

3. Results and Discussion 

3.1 Structural analysis 

Phase analysis of FeNi3 m-NPs produced in ethanol/water medium using surfactant SDS was performed by 

X-ray diffraction and is given in Fig. 1. The three diffraction peaks occurring at 2θ angle 44.1°, 51.5° and 75.8° 

correspond to the planes (111), (200) and (220) of cubic FeNi3 according to JCPDS card of 65-3244 [4, 32]. 

The lattice parameter constant calculated from the peak at 2θ= 44.1° in the XRD diffraction pattern was 

determined as a=3.5547 Å. This value is very close to 3.555 Å of the FeNi3 lattice parameter constant given in 

the JCPDS card. Moreover, in the XRD pattern, any diffraction peaks related to Fe and Ni oxides or other 

impurities were determined. The peaks of XRD diffraction pattern show that in the presence of SDS as an 

anionic surfactant, highly crystal FeNi3 m-NPs can be successfully synthesized with the proposed hydrothermal 

technique [27, 38]. Liao et al., in their study on the manufacture of FeNi3 alloy by hydrothermal method, 

examined the influence of the starting materials’ Fe:Ni molar ratio on the products to be obtained. They showed 

that FeNi3 nanoparticles can only be obtained in reactions with a 1:3 Fe:Ni molar ratio [27]. Therefore, our 

study chose the initial Fe:Ni molar ratio as 1:3, and FeNi3 m-NPs were successfully obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD pattern of FeNi3 nanoparticles. 

 

The FTIR spectrum of the FeNi3 m-NPs prepared with SDS in the ethanol/water medium in Fig. 2. The FT-

IR spectrum showed one distinct peak look of 478.3 cm−1 which can be associated with the metallic bonds of 

Fe-Ni, Ni-Fe-Ni, or Fe-Ni-Ni groups [40, 41]. As a result, the FTIR (analysis) overlaps with the XRD diffraction 

pattern and confirms the hydrothermal method's successful production of FeNi3 m-NPs. 
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Fig. 2. FTIR spectra of FeNi3 nanoparticles. 

 

3.2 Morphological analysis 

 

Fig. 3(a) and (b) show the SEM image and EDS analysis of FeNi3 m-NPs obtained by the hydrothermal 

method, respectively. The SEM image given in Fig. 3(a) displays that FeNi3 m-NPs had spherical morphology. 

The diameters of the spherical nanoparticles were examined with the Image-J program, and it was seen that the 

synthesized nanoparticles had an average radius of 169.33 nm. According to the literature review, it is seen that 

the morphology obtained is like the morphologies of FeNi3 nanoparticles produced by the hydrothermal method 

[4, 32, 38]. 

The approximate elemental composition of the FeNi3 m-NPs was determined by EDS in Fig. 3(b). Elemental 

analysis to determine the compositions revealed several well-defined energy lines of Fe and Ni. The atomic 

contents of Iron and Nickel were found to be 27.30% and 72.70%, respectively, and an atomic ratio of 2.67 was 

obtained, which is close to the ratio of Fe:Ni in FeNi3 alloys. The differences in the precursor composition 

probably originate from the exhaust in the hydrothermal solution. This atomic ratio indicates that the synthesis 

of FeNi3 nanoparticles has been accomplished. 

 

Fig. 3. (a) SEM image and (b) EDS spectra of FeNi3 m-NPs. 

 

The synthesis of FeNi3 m-NPs was carried out via a simple hydrothermal technique using a 1:3 initial 

precursor composition of Fe and Ni salt mixture to provide a synthesis of only FeNi3 m-NPs without the 

formation of any oxide or metallic forms of these metals. To determine the chemical structure and elemental 
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distribution of m-NPs produced by the hydrothermal method in more detail, an elemental mapping analysis of 

the region in the SEM image was performed. Elemental mapping analysis of the produced nanoparticles is given 

in Fig. 4. Fig. 4(a) shows the SEM micrograph of the region where elemental mapping was performed. In the 

elemental mapping analysis, it is seen in Fig. 4(b) that Ni and Fe elements are homogeneously distributed in the 

spherical m-NPs. According to the elemental mapping images in Fig. 4(c-d), it can be understood from the color 

intensities of the elements that while the Ni element is found in a dense proportion in the spherical particles, the 

Fe element is in a lower proportion compared to Ni. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. (a) SEM image, (b-d) elemental mapping images of FeNi3 m-NPs. 

 

 

3.3 Formation mechanisms of the FeNi3 m-NPs 

 

Based on the results obtained, the synthesis mechanism of FeNi3 m-NPs is explained as follows [24, 25, 27]. 

In the first step, when NaOH is slowly added to the solution prepared from Fe (Fe(NO3)3.9H20) and Ni 

(NiCl2.6H20) salts, the hydroxide form M(OH)2 (M=Ni, Fe) is formed. If the (Fe+3/Fe) and (Ni+2/Ni) ratios are 

close in the solution medium, solid Fe(OH)2 and Ni(OH)2 are decomposed to form Fe+3 and Ni+2 ionic forms 

with the reactions shown in Equations 1 and 2 as follow: 

 

𝑁𝑖(𝑂𝐻)2 ↔ 𝑁𝑖+2 + 2𝑂𝐻−           (1) 

𝐹𝑒(𝑂𝐻)2 ↔ 𝐹𝑒+3 + 3𝑂𝐻−           (2) 

Then, with the effect of hydrazine hydrate (N2H4.H2O) and SDS added to the solution, Fe+3 and Ni+2 ions 

form metallic Fe and Ni atoms as shown in Equations 3 and 4. 

 

2𝑁𝑖+2 + 𝑁2𝐻4 + 4𝑂𝐻− → 2𝑁𝑖(𝑠) + 𝑁2(𝑔) + 4𝐻2𝑂         (3) 

4𝐹𝑒+3 + 3𝑁2𝐻4 + 12𝑂𝐻− → 4𝐹𝑒(𝑠) + 3𝑁2(𝑔) + 12𝐻2𝑂                                                   (4) 
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Finally, metallic atoms in the solution medium interact to form Fe-Ni alloy nuclei as shown in Equation 5.  

(1 − 𝑥)𝑁𝑖 + 𝑥𝐹𝑒 → 𝑁𝑖(1−𝑥)𝐹𝑒𝑥  𝑓𝑜𝑟 𝑥 < 1             (5)   

In Equation (1-5), it is known that Fe and Ni salts in the intensely basic medium are reduced by hydrazine 

hydrate during the formation of FeNi3 nanoparticles. Hydrazine hydrate (N2H4.H2O) is known to be a Lewis 

base. Hydrazine hydrate decomposes in aqueous medium as in the equation below [42, 43]: 

𝑁2𝐻4 ∙ 𝐻2𝑂 ↔ 𝑁2𝐻5
+ + 𝑂𝐻−                 (6)               

Results showed that in the absence of surfactant, FCC FeNi3 nuclei were randomly formed by homogeneous 

nucleation [44]. Studies in the literature have shown that surfactants have superior abilities to form particles in 

a morphological and size-controlled style [45]. The cores of m-NPs are formed from the interaction between 

Fe/Ni ions and the sulphonic groups of the surfactant (SDS). SDS serves as a template for the growth of FeNi3 

m-NPs with spherical morphology [46].  

4. Conclusion 

The spherical FeNi3 m-NP was successfully produced using the hydrothermal method via hydrazine 

reduction at the ambient condition in the presence of SDS, and the following conclusions can be drawn:  

• According to XRD analysis, FeNi3 m-NPs have been synthesized without the formation of any oxide 

or metallic forms of Fe and Ni metals.  

• FTIR analysis revealed a vibration peak showing the presence of Fe-Ni, Ni-Fe-Ni, or Fe-Ni-Ni group 

metallic bonds, which indicates the formation of the m-NPs.  

• SEM and EDS analyses show that spherical FeNi3 m-NPs have approximately 169.33 nm average grain 

size. 

• Elemental mapping images of Fe and Ni elements provide that homogeneous distribution of these 

elements through FeNi3 m-NPs. 

Such a hydrothermal synthesis route of m-NPs can open the door for designing a new class of other m-NPs 

with different sizes and morphologies for various potential application fields. 
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